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Éva JAKAB
 

Das Jahr 2019 war ein besonderes Jubiläumsjahr für die Alexander von Humboldt-Stiftung, aber auch für 
alle Humboldt-Stipendiaten und Alumni. Der Namensgeber und Vorbild der Stiftung, Alexander von Hum-
boldt, ist am 14. September 1769 geboren, wir feierten also den 250. Jahrestag seines Lebens – und seines 
Werkes.

Alexander von Humboldt hat in der Wissenschaft neue Maßstäbe gesetzt: seine Neugierde, sein Wis-
sensdurst, seine Energie und Engagement im Kennenlernen und „Vermessen“ der Welt faszinierten bereits 
seine Zeitgenossen und übten auf die deutsche und internationale Wissenschaft in vieler Hinsicht bestim-
mend. Durch seine legendären Reisen nach Lateinamerika, in die USA und nach Zentralasien wurden un-
sere Kenntnisse über Flora und Fauna wesentlich erweitert. Seine Offenheit und Vorurteilslosigkeit bei der 
Erkundung fremder Kulturen belehrte Bürger und Herrscher der damaligen Welt – und auch die Menschen 
des 21. Jahrhunderts. Die von ihm geschaffenen Werte prägen die Alexander von Humboldt-Stiftung, die 
stets bemüht ist, Wissenschaftler aller Disziplinen aus der ganzen Welt nach Deutschland zu ziehen, um 
ihre Forschung zu fördern. Wir alle – auch die ungarischen Humboldtianer – sind irgendwie die „Kinder“ 
des Alexander von Humboldt.

Es ist erfreulich, dass im Jubiläumsjahr 2019 auch in Budapest zwei Veranstaltungen im Zeichen von 
Humboldt stattgefunden haben. Am 15. November hat Professor Árpád Bernáth an der Ungarischen Aka-
demie der Wissenschaften eine Gedächtnisfeier organisiert, welche die literarische Tätigkeit von Humboldt 
bzw. seine Präsenz im damaligen Ungarn zum Thema hatte. Am 25. November hat Professor Zoltán Dövé-
nyi eine Jubiläumstagung, ebenfalls an der Ungarischen Akademie der Wissenschaften, veranstaltet – um 
Humboldts Beitrag zur Pf lanzenkunde und Geologie zu würdigen.

Die Berichte über beide Veranstaltungen, und vieles mehr findet der Leser in diesem neuen Heft der 
Humboldt-Nachrichten!  

Vorwort

                                                                                                
Éva Jakab ,  Prä s ident ,  Hu mboldt-Vere i n Ung a rn

Alice FIALOWSKI

Gewählte Vorträge des Humboldt-Kollegs
„Neue Grenzen – New Frontiers”

INFINITY: ANCIENT AND NEW

To s e e  a  Wor l d  in  a  Gra in o f  S and
And a  Heaven in  a  Wi l d  F l owe r ,
Ho l d Inn i t y  in  t h e  pa lm o f  y ou r  hand
And E t e r n i t y  in  an hou r .

Wi l l i a m Bl a ke ,  Au g u r ie s  o f  In noc enc e

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
William Blake, “Auguries of Innocence”

Fig 1, 2, 3

INFINITY: ANCIENT AND NEW

ALICE FIALOWSKI

Infinity is one of the strangest, richest, and most interesting notions,
which the human brain ever invented. It led the ancient thinkers to
many logical paradoxes, like the paradox of Akhilles and the turtle, the
solution of which one had to wait about 20 centuries.

The notion has been puzzling the mankind for several thousand
years. It appears in genesis legends, it is the topic of many philo-
sophical arguments, religion and science share the notion. The ancient
scientists were not specialized to one or another area, but rather they
were mainly philosophers and thinkers. This way they were able to ap-
proach the notion of limitness, infinity: philosophically, astronomically,
or even mathematically.

Infinity is closely related to the eternity, as the infinity of time. One
of the many pictures from the ancient far East says the following:
”Once every 100 years a little bird alights on the top of the diamond
mountain and clears on it its nib. When the mountain completely
deteriorates, then one instant is gone from the eternity.”

Fig 4

1. Greeks

We have no written memory about the arguments on infinity from
the time before the Greeks. For the Greek civilization everything what
is infinite originates from the abysm (primal chaos). In their world
every quantity was a finite number. For Aristotle and Pythagoras the
infinity meant as odd rather than perfect. Even though Pythagoras
invented un-understandable numbers like

√
2, but they did not have

then an appropriate theory about infinity to define it properly.

Fig 5

This article is based on the autor’s presentation at the New Frontiers, Humboldt
Kolleg Budapest Conference, December 1, 2018.
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Anaximandros (610-546 BC), the ancient Greek philosopher was Fig 5
the first to formulate the conjecture on the infinity of the universe, and
tried to lighten the notion of unboundedness: “Independently, where
the soldier stands, he can stretch out his lance a bit further yet.” Or:
“The principle and beginning ... of being is the limitless, where beings
have their beginning, therein also have their end according to necessity;
for they pay penalty and retritbution to each other for their injustice
in accordance with the arrangement of time.”

One can see two different approaches to infinity: Infinitely big, un-
bounded, and infinitely small, infinitely divisible. Time is unbounded,
the space around us has no boundary, the space and time can be divided
into smaller pieces without any end.

Fig 6
Aristotle (384-322 BC) is credited with being the root of a field of Fig 6

thought, in his influence of succeeding thinking for a period spanning
more than one subsequent millennium, by his rejection of the idea of
actual infinity. He wrote: “It is always possible to think of a larger
number: for the number of times a magnitude can be bisected is infinite.
Hence the infinite is potential, never actual; the number of parts that
can be taken always surpasses any assigned number.” - This is often
called potential infinity. Actual infinity is for instance the collection of
all natural numbers. Aristotle, and many others after him, rejected the
existence of actual infinity. He wrote: “Many absurdity follows from
both the negation of infinity and acceptance of infinity.”

Fig 7
Such a big uncertainity, and unacceptence led the thinkers to avoid

the notion of infinity, even in such cases when with today’s view it
would be obvios. Euclid (∼ 300 BC) in his book Elements shows
that “there exist prime numbers more than any collection of primes”,
so there are infinitely many prime numbers, - but he does not state
this. He also avoids the notion of infinity in geometry. He writes in
the “Elements”: “A point is such which has no part.” This thinking
avoids the usage of the notion of infinity, as this definition of a point
uses the infinite divisibility of the space.

2. Early Indian Thinking

The Jain Agamas (∼ 400 BC) (texts of Jainism) classifies all num-
bers into three sets: enumerable, innumerable, and infinite. The Jains
were the first to discard the idea that all infinities were the same or
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The Jain Agamas (∼ 400 BC) (texts of Jainism) classifies all num-
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in area, in volume, and infinite perpetually (infinite number of dimen-
sions). The highest enumerable number N of the Jains corresponds
to the modern concept of ℵ0 (the cardinal number of the infinite set
of integers {1, 2, ...}, the smallest cardinal transfinite number. They
also defined a whole system of cardinal numbers, of which the highest
enumerable number N is the smallest.

For further understanding, we had to wait more than thou-
sand years!

3. Views from the Renaissance and European Scientists

Fig 8
Galileo (1564-1642) discussed the example of comparing the square

numbers {1,4,9,16,...} with the natural numbers {1,2,3,4,...} as follows:

1 → 1,

2 → 4,

3 → 9,

4 → 16,

...

It appeared by this reasoning as though a set (Galileo did not use
the terminology) which is naturally smaller than the set of which it is
part (since it does not contain all the members) is in some sense the
same size. Galileo found no way around this problem: “So far as I see
we can only infer that the totality of all numbers is infinite, that the
number of squares is infinite, and the number of their roots in infinite;
neither is the number of squares less than the totality of all numbers,
nor the latter greater than the former; and finally the attributes equal,
greater, less are not applicable to infinite, but only to finite quantities.”

Fig 9
The idea that size can be measured by one-to-one correspondence

is today known as Hume’s principle(A Treatise of Human Nature,
1740), although Hume (1711-1776), like Galileo, believed the principle
could not be applied to the infinite.

Fig 10
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into smaller pieces without any end.
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thought, in his influence of succeeding thinking for a period spanning
more than one subsequent millennium, by his rejection of the idea of
actual infinity. He wrote: “It is always possible to think of a larger
number: for the number of times a magnitude can be bisected is infinite.
Hence the infinite is potential, never actual; the number of parts that
can be taken always surpasses any assigned number.” - This is often
called potential infinity. Actual infinity is for instance the collection of
all natural numbers. Aristotle, and many others after him, rejected the
existence of actual infinity. He wrote: “Many absurdity follows from
both the negation of infinity and acceptance of infinity.”

Fig 7
Such a big uncertainity, and unacceptence led the thinkers to avoid

the notion of infinity, even in such cases when with today’s view it
would be obvios. Euclid (∼ 300 BC) in his book Elements shows
that “there exist prime numbers more than any collection of primes”,
so there are infinitely many prime numbers, - but he does not state
this. He also avoids the notion of infinity in geometry. He writes in
the “Elements”: “A point is such which has no part.” This thinking
avoids the usage of the notion of infinity, as this definition of a point
uses the infinite divisibility of the space.

2. Early Indian Thinking

The Jain Agamas (∼ 400 BC) (texts of Jainism) classifies all num-
bers into three sets: enumerable, innumerable, and infinite. The Jains
were the first to discard the idea that all infinities were the same or
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in area, in volume, and infinite perpetually (infinite number of dimen-
sions). The highest enumerable number N of the Jains corresponds
to the modern concept of ℵ0 (the cardinal number of the infinite set
of integers {1, 2, ...}, the smallest cardinal transfinite number. They
also defined a whole system of cardinal numbers, of which the highest
enumerable number N is the smallest.

For further understanding, we had to wait more than thou-
sand years!

3. Views from the Renaissance and European Scientists

Fig 8
Galileo (1564-1642) discussed the example of comparing the square

numbers {1,4,9,16,...} with the natural numbers {1,2,3,4,...} as follows:

1 → 1,

2 → 4,

3 → 9,

4 → 16,

...

It appeared by this reasoning as though a set (Galileo did not use
the terminology) which is naturally smaller than the set of which it is
part (since it does not contain all the members) is in some sense the
same size. Galileo found no way around this problem: “So far as I see
we can only infer that the totality of all numbers is infinite, that the
number of squares is infinite, and the number of their roots in infinite;
neither is the number of squares less than the totality of all numbers,
nor the latter greater than the former; and finally the attributes equal,
greater, less are not applicable to infinite, but only to finite quantities.”

Fig 9
The idea that size can be measured by one-to-one correspondence

is today known as Hume’s principle(A Treatise of Human Nature,
1740), although Hume (1711-1776), like Galileo, believed the principle
could not be applied to the infinite.
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part (since it does not contain all the members) is in some sense the
same size. Galileo found no way around this problem: “So far as I see
we can only infer that the totality of all numbers is infinite, that the
number of squares is infinite, and the number of their roots in infinite;
neither is the number of squares less than the totality of all numbers,
nor the latter greater than the former; and finally the attributes equal,
greater, less are not applicable to infinite, but only to finite quantities.”

Fig 9
The idea that size can be measured by one-to-one correspondence

is today known as Hume’s principle(A Treatise of Human Nature,
1740), although Hume (1711-1776), like Galileo, believed the principle
could not be applied to the infinite.
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John Wallis(1616-1703) English mathematician gave an expression
for approximating π:
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This approximation shows the necessity of applying an infinite process.
In 1657 Wallis introduced the symbol ∞ , which symbolizes a never
ending curve. This symbol spread almost immediately.

But most scientists, as soon as the symbol appeared, considered the
argument a paradox. Most the the empiricist philosophers, still belied
that we can have no proper idea of the infinite. They believed all
our ideas were derived from sense data or impressions, and since all
sensory impressions are inherently finite, so too are our thoughts and
ideas. Our idea of infinity is merely negative or private.

Modern discussion of the infinite is now regarded as part of set
theory and mathematics.

Fig 11

4. Infinite Quantities

4.1. 1. Countably infinite sets. What is a set? Mathematicians
have found that they cannot define this concept and leave it undefined.

It has elements.
Basic notion: x belongs to the set A: x ∈ A.
We say that two sets are the “same” if they have the same elements.
Let A and B be sets. If every element of A is also an element of B,

then we say that A is a subset of B: A ⊂ B.

Sets appear in all areas of life. Mainly we deal with finite sets, for
which we can count the number of their elements. But as soon as we
consider natural numbers, or positive rational numbers, we get into the
problem of infinity.

Fig 12
Cantor (1845-1918) raised the question weather these infinite quan-

tities are comparable. Consider the natural numbers. We can get to
those by counting, but it is an infinite procedure. Cantor called such
sets countably infinite sets and denoted their size (cardinality) by
ℵ0 (ℵ0 is the first letter of the Hebrew alphabet). He also noticed the
property of N that there can be a 1-to-1 correspondence between N and
its real subset (like square numbers and N, also by Galilei). (To make
the 1-to1 correspondence clear, imagine that you have a seat on an
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airplane. Exactly one seat is assiged to you, so there is a 1-to-1 corre-
spondence between the passangers and their seats.) Or, even numbers
2n, n ∈ N form a subset of N, and we can uniquely assign to each
n ∈ N the even number 2n.

For infinite sets this a strange phenomena, and is completely against
our natural imagination! How can a subset of a set have the same
“size” as the set itself? (By same size we mean there is a 1-to-1 corre-
spondence between the two sets.)

This is Cantor’s important achievement which shows that infinite
sets are beyond our usual “finite” imagination.

In fact, infinite sets are exactly those which have a proper subset of
the “same size”.

The size of even and odd numbers is also ℵ0. Cantor showed:

ℵ0 + ℵ0 = ℵ0.

Question: Is this infinite size enough to cover all existing sets?

Fig 13, 14
Hilbert Hotel(Example of George Gamow, 1947)

Consider a hypothetical hotel with a countably infinite number of
rooms, all of which are occupied. One might be tempted to think that
the hotel would not be able to accommodate any newly arriving guests,
as would be the case with a finite number of rooms.

Finitely many new guests

Suppose a new guest arrives and wishes to be accommodated in the
hotel. We can (simultaneously) move the guest currently in room 1 to
room 2, the guest currently in room 2 to room 3, and so on, moving
every guest from his current room n to room n+1. After this, room 1 is
empty and the new guest can be moved into that room. By repeating
this procedure, it is possible to make room for any finite number of
new guests.

Infinitely many new guests

It is also possible to accommodate a countably infinite number of
new guests: just move the person occupying room 1 to room 2, the
guest occupying room 2 to room 4, and, in general, the guest occupying
room n to room 2n (2 × n), and all the odd-numbered rooms (which
are countably infinite) will be free for the new guests.

Infinitely many coaches
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airplane. Exactly one seat is assiged to you, so there is a 1-to-1 corre-
spondence between the passangers and their seats.) Or, even numbers
2n, n ∈ N form a subset of N, and we can uniquely assign to each
n ∈ N the even number 2n.

For infinite sets this a strange phenomena, and is completely against
our natural imagination! How can a subset of a set have the same
“size” as the set itself? (By same size we mean there is a 1-to-1 corre-
spondence between the two sets.)

This is Cantor’s important achievement which shows that infinite
sets are beyond our usual “finite” imagination.

In fact, infinite sets are exactly those which have a proper subset of
the “same size”.

The size of even and odd numbers is also ℵ0. Cantor showed:

ℵ0 + ℵ0 = ℵ0.

Question: Is this infinite size enough to cover all existing sets?

Fig 13, 14
Hilbert Hotel(Example of George Gamow, 1947)

Consider a hypothetical hotel with a countably infinite number of
rooms, all of which are occupied. One might be tempted to think that
the hotel would not be able to accommodate any newly arriving guests,
as would be the case with a finite number of rooms.

Finitely many new guests

Suppose a new guest arrives and wishes to be accommodated in the
hotel. We can (simultaneously) move the guest currently in room 1 to
room 2, the guest currently in room 2 to room 3, and so on, moving
every guest from his current room n to room n+1. After this, room 1 is
empty and the new guest can be moved into that room. By repeating
this procedure, it is possible to make room for any finite number of
new guests.

Infinitely many new guests

It is also possible to accommodate a countably infinite number of
new guests: just move the person occupying room 1 to room 2, the
guest occupying room 2 to room 4, and, in general, the guest occupying
room n to room 2n (2 × n), and all the odd-numbered rooms (which
are countably infinite) will be free for the new guests.

Infinitely many coaches
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new guests.
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It is also possible to accommodate a countably infinite number of
new guests: just move the person occupying room 1 to room 2, the
guest occupying room 2 to room 4, and, in general, the guest occupying
room n to room 2n (2 × n), and all the odd-numbered rooms (which
are countably infinite) will be free for the new guests.

Infinitely many coaches
6 ALICE FIALOWSKI

It is possible to accommodate countably infinitely many coachloads
of countably infinite passengers each. Let us prove the last statement.

1. The guest in the first room should stay, then leave the next room
empty.

2. The guest from the second room moves to the third room , and
the next 2 rooms room remain empty.

3. The guest from the third room moves to the 6th room, and the
next 3 rooms remain empty.

4. The guest of the 4th room moves to the 10th room and the next
4 rooms remain empty.

Fig 15
With this method we can make enough empty rooms for all the

guests. Take the guests from the first coach (we can do that, as the
number of coaches is countable) and put its guests into the “first”
empty rooms. Then we can see that again 1,2,3,... rooms remained
empty. Continuing the recursion, we could accommodate infinitely
many guests of infinitely many coaches in the Hilbert Hotel.

Remark. Here we had to use the “axiom of choice” (later).

Summerizing the above statements we can write:

ℵ0 + 1 = ℵ0,

ℵ0 + ℵ0 = ℵ0,

ℵ0 × ℵ0 = ℵ0.

But this example raises a new question: Does there exist a bigger than
ℵ0 size set?

4.2. Uncountable sets. An infinite set is called uncountable if it is
not countable.

Cantor shows that the countable set of any real numbers is not com-
plete. He uses the decimal expression of numbers, Consider the next
sequence:

x1 = 14, 13,

x2 = 1, 4141,

x3 = 1, 414232,

x4 = 1, 4142355621,

x5 = 1, 4142356235,

x6 = 1, 4142356237
...
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It is clear that x1 < x2 < x3 < . . . because any two elements of the
sequence equal up to a certain decimal point, and because of the first
different digits the bold face ones - , any two numbers on the list are
different. Now we form a number with the help of the bold face digits.
Let it be x. It is clear that for a list of arbitrary length we can always
find an appropriate x which is the least upper bound of the listed xi-s,
and is different from the listed ones:

x = 1,414235637 . . .

This way similarly of Euclid’s proof, we saw that no such list is
complete. As a consequence, a countable list of real numbers is never
complete.

Fig 16
Axel Harnack (1851-1888) concluded a similar result when he tried

to cover the entire real line with finite segments. Let {a1, a2, a3, a4, . . .}
the complete list of all real numbers. Every segment can be covered so
that the sum of the length of segments is arbitrary small. Let the total
length of the segments ε. Then, if we take a segment of length ε/2,
and we can cover with this a1, then can take the half of the remaining
length ε/4, and cover with it a2, etc. By cutting to half of the remaining
segments we can cover an arbitrary list of real numbers so that the totel
length of the segments is ε.

Fig 17

Similarly to the previous argument, it is clear that the countably
infinite list of the points a1, a2, a3, a4, . . . does not cover all the real
numbers. Beside, it is also clear that the total length of the segments
covering the points {a1, a2, a3, a4, . . .} can be arbitrary small.

In both presented arguments we notice a similarity which Cantor
published in 1891. Consider the subsets of positive integers. Such
a subset H can be described as a countably infinite sequence of 0-s
and 1-s as follows. The nth number is 1, if H contains the number
n, and is 0 if it does not. Now take ℵ0 such H sets. It means that
these sets we can count as H1, H2, H3, . . ., as we can assign to each set
a natural number n. As before, we have to show that none of such
counting contains all the subsets of positive integers. We can do this
by constructing a set H which differs in at least one element from the
listed Hi sets. Giving such a set is not hard. Put every n into the
set H if Hn does not contain n, and if it is contained in Hn, then H
should not contain n. Then it is easy to see that H is not in our list
, as it differs in n from each Hn. Cantor called this kind of reasoning
8 ALICE FIALOWSKI

diagonal, and it can be discovered in every previous example where
we showed the existence of not countable infinite quantities.

Imagine a diagram consisting of countable infinite columns and rows,
the rows of which are the sets Hi, represented as sequence of 0-s and
1-s, depending on weather Hi contains the positive integer assigned to
the column. Then with the help of the sequence in the main diagonal
we can construct the set H which definitely does not appear in our list.

- 1 2 3 4 5 · · ·
H1 0 1 1 0 1 · · ·
H2 0 0 1 0 1 · · ·
H3 1 0 1 1 0 · · ·
H4 1 1 1 1 1 · · ·
H5 0 1 0 1 0 · · ·
...

...
...

...
...

...
. . .

H 1 1 0 0 1 · · ·
l

We can see that in constructing the set H, we interchanged to the
opposite each element of the main diagonal, from which we can con-
clude the size of the set which consists of all subsets of positive integers.
We can determine the size of this set, if we consider the process of con-
structing the set H. H is a set of sequences consisting of 0-s and 1-s,
where to any place we can write two values , following the above rule.
When we try to construct all such 0, 1 sequences, we write in ℵ0 spaces
one value out of 2. This means ℵ0 product terms by the following:

2× 2× 2× 2 . . .

This way we were able to define with the diagonal argument 2ℵ0 dif-
ferent sets of positive integers. On the other hand, Cantor’s reasoning
also shows that ℵ0 < 2ℵ0 , because there are 1 to 1 correspondences
between the natural numbers and some of its subsets, but not all of its
subsets. We have seen in our previous examples that there exists such
a set, the size of which is bigger than ℵ0. Question: For the size of
such sets is the 2ℵ0 , obtained by the diagonal argument satisfactory?

First, consider the number of points on the line. We have seen that
this is definitely bigger than ℵ0. With the help of the next figure we
prove geometrically that there can be obtained a 1 to 1 correspondence
between the points of the segment (0, 1) and the whole number line.
To do this, we just “bend” the (0, 1) segment into a half circle. Then
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diagonal, and it can be discovered in every previous example where
we showed the existence of not countable infinite quantities.

Imagine a diagram consisting of countable infinite columns and rows,
the rows of which are the sets Hi, represented as sequence of 0-s and
1-s, depending on weather Hi contains the positive integer assigned to
the column. Then with the help of the sequence in the main diagonal
we can construct the set H which definitely does not appear in our list.

- 1 2 3 4 5 · · ·
H1 0 1 1 0 1 · · ·
H2 0 0 1 0 1 · · ·
H3 1 0 1 1 0 · · ·
H4 1 1 1 1 1 · · ·
H5 0 1 0 1 0 · · ·
...

...
...

...
...

...
. . .

H 1 1 0 0 1 · · ·
l

We can see that in constructing the set H, we interchanged to the
opposite each element of the main diagonal, from which we can con-
clude the size of the set which consists of all subsets of positive integers.
We can determine the size of this set, if we consider the process of con-
structing the set H. H is a set of sequences consisting of 0-s and 1-s,
where to any place we can write two values , following the above rule.
When we try to construct all such 0, 1 sequences, we write in ℵ0 spaces
one value out of 2. This means ℵ0 product terms by the following:

2× 2× 2× 2 . . .

This way we were able to define with the diagonal argument 2ℵ0 dif-
ferent sets of positive integers. On the other hand, Cantor’s reasoning
also shows that ℵ0 < 2ℵ0 , because there are 1 to 1 correspondences
between the natural numbers and some of its subsets, but not all of its
subsets. We have seen in our previous examples that there exists such
a set, the size of which is bigger than ℵ0. Question: For the size of
such sets is the 2ℵ0 , obtained by the diagonal argument satisfactory?

First, consider the number of points on the line. We have seen that
this is definitely bigger than ℵ0. With the help of the next figure we
prove geometrically that there can be obtained a 1 to 1 correspondence
between the points of the segment (0, 1) and the whole number line.
To do this, we just “bend” the (0, 1) segment into a half circle. Then
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prove geometrically that there can be obtained a 1 to 1 correspondence
between the points of the segment (0, 1) and the whole number line.
To do this, we just “bend” the (0, 1) segment into a half circle. Then

INFINITY: ANCIENT AND NEW 9

the radii from the center of the half circle to the points of half circle
give an appropriate correspondence between (0, 1) and the real line.

Fig 18

To identify real numbers let us use the following coding method.
Define the binary extension of an x real number in the interval (0, 1)
like this: let us first cut into half the interval. If x is in the left side
half interval, let us write after the binary point 0, if it lies in the right
side, let us write 1. After, to define the second binary digit, repeat the
process for the half interval containing x. Example: we get the binary
extension of 1/3 as follows:

Fig 19

.01010101010101010101010101010101010101 . . .

A problem might arise if the point x lies on the dividing line, like
x = 1/2 or x = 1/4. Then we put x to one of the sides. If for instance
x = 1/2, then putting x to the left side, we get the following extension:

.0111111111111111111111111111111111111 . . .

If we put x to the right side, we get

.1000000000000000000000000000000000 . . .

We can overcome this problem and we get a 1 to 1 correspondence
between the set R and the set of all subsets of natural numbers.

Fig 20

5. New problems

The diagonal reasoning can be applied to every set, so one can show
the every set has more subsets then elements. From this it follows
that we can not find a biggest set. So it does not exist the set of
all sets, because if it would exist, it would be the biggest set. Along
this reasoning the question arises: What do we mean by “set”, if the
set of all sets does not exist. Cantor could not precisely answer this
question, he rather restricted his studies to sets coming from well-
defined operations, like counting the subsets of a set.

The question was more complicated for the philosophic mathemati-
cians,Fig 21, 22 likeGottlob Frege (1848-1925), andBertrand Russell (1872-
1970). They thought that every property P uniquely defines a set ,
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5. New problems

The diagonal reasoning can be applied to every set, so one can show
the every set has more subsets then elements. From this it follows
that we can not find a biggest set. So it does not exist the set of
all sets, because if it would exist, it would be the biggest set. Along
this reasoning the question arises: What do we mean by “set”, if the
set of all sets does not exist. Cantor could not precisely answer this
question, he rather restricted his studies to sets coming from well-
defined operations, like counting the subsets of a set.

The question was more complicated for the philosophic mathemati-
cians,Fig 21, 22 likeGottlob Frege (1848-1925), andBertrand Russell (1872-
1970). They thought that every property P uniquely defines a set ,
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exactly the one, all the elements of which satify property P . The prob-
lem arises if we define property P as a set, is it that, when we get
to the problem of a set containing all the sets. Russell gave the next
popular barber example for this paradox: Once the barber of a town
stated that he will cut the hair for every man who does not cut his hair
himself. But if this is true, who will cut the hair of the barber?

To overcome the problem, Russell made the following restriction.
Consider the set of all such sets, which do not contain themselves as
an element. So if we move the barber from the town, we resolve the
paradox. Russel’s reasoning convinced the mathematical society about
the necessity of defining certain basic notions in the entire mathematics.

Fig 23
At the beginning of the 20th century, Ernst Zermelo (1871-1953)

thought that set theory can be well-founded by introducing axioms.
This way he formalized Cantor’s intuition, that every set can be con-
structed with well-defined operations from a set, like from the set of
natural numbers.

Fig 24

6. Axiomatic approach of infinity

6.1. Set theoretical axioms. Most of the axioms used in today’s set
theory originates from Zermelo,

Fig 25

and with an important addition from Abraham Fraenkel (1891-
1965), and we call it Zermelo-Fraenkel system of axioms (1904
and 1922).

1. Axiom of Extensionality: If two sets have the same elements,
the two sets are equal.

2. Axiom of Separation (or Axiom of Subsets): If A is a set
and P is a condition on elements of A then those elements of A which
satisfy condition P form a set.

3. Axiom of Pair (or Axiom of Unordered Pairs): If A and B
are sets, then there exists a set consisting of exactly A and B.
4. Axiom of Union (or Axiom of Sum Set): For any set of sets

F , there is a set A, containing every element that is an element of some
member of F .
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that we can not find a biggest set. So it does not exist the set of
all sets, because if it would exist, it would be the biggest set. Along
this reasoning the question arises: What do we mean by “set”, if the
set of all sets does not exist. Cantor could not precisely answer this
question, he rather restricted his studies to sets coming from well-
defined operations, like counting the subsets of a set.

The question was more complicated for the philosophic mathemati-
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exactly the one, all the elements of which satify property P . The prob-
lem arises if we define property P as a set, is it that, when we get
to the problem of a set containing all the sets. Russell gave the next
popular barber example for this paradox: Once the barber of a town
stated that he will cut the hair for every man who does not cut his hair
himself. But if this is true, who will cut the hair of the barber?

To overcome the problem, Russell made the following restriction.
Consider the set of all such sets, which do not contain themselves as
an element. So if we move the barber from the town, we resolve the
paradox. Russel’s reasoning convinced the mathematical society about
the necessity of defining certain basic notions in the entire mathematics.

Fig 23
At the beginning of the 20th century, Ernst Zermelo (1871-1953)

thought that set theory can be well-founded by introducing axioms.
This way he formalized Cantor’s intuition, that every set can be con-
structed with well-defined operations from a set, like from the set of
natural numbers.

Fig 24

6. Axiomatic approach of infinity

6.1. Set theoretical axioms. Most of the axioms used in today’s set
theory originates from Zermelo,

Fig 25

and with an important addition from Abraham Fraenkel (1891-
1965), and we call it Zermelo-Fraenkel system of axioms (1904
and 1922).

1. Axiom of Extensionality: If two sets have the same elements,
the two sets are equal.

2. Axiom of Separation (or Axiom of Subsets): If A is a set
and P is a condition on elements of A then those elements of A which
satisfy condition P form a set.

3. Axiom of Pair (or Axiom of Unordered Pairs): If A and B
are sets, then there exists a set consisting of exactly A and B.
4. Axiom of Union (or Axiom of Sum Set): For any set of sets

F , there is a set A, containing every element that is an element of some
member of F .
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5. Axiom of Power Set: For every set A there exists its power set
P(A), which consists of all subsets of A.

6. Axiom of Infinity: An inductive infinite set exists. Its elements
are: ∅, {∅}, {∅,{∅}}, {∅, {∅},{∅,{∅}}}, ...
7. Axiom of Replacement: The image of a set under any definable

function is also a set.
8. Axiom of Regularity or (Axiom of Foundation) Every

nonempty set A contains an element that is disjoint from A.
9. Axiom of Choice: For every set S of nonempty disjoint sets,

there exists a (choice) function f defined on S such that for each set
of S, f(x) ∈ x.

Remark. We have used these axioms, including the axiom of choice,
in our previous examples, like the union of countable many countable
sets is countable.

Let us denote the elements of the sets A0, A1, A2, . . . by

A0 = {a00, a01, . . .}
A1 = {a10, a11, . . .}
A2 = {a20, a21, . . .}
A3 = {a30, a31, . . .}
...

Let us take the union of these sets:

X = A0 ∪ A1 ∪ A2 ∪ A3 . . . = {a00, a01, a10, a20, a11, a02, a03, a12 . . .}
Choose an enumeration of elements of Ai (axiom of choice!)

A0 a00 → a01 a02 → a03 · · ·
↙ ↗ ↙

A1 a10 a11 a12 · · ·
↓ ↗ ↙

A2 a20 a21 · · ·
↙

A3 a30 · · ·
... ↓

Let us illustrate the advantage of the axiomatic set theory on an
Fig 26

example. János Neumann (1903-1957) defined in 1920 the natural
numbers as follows. Let ∅ be the empty set. 1 = {∅}, 2 = {∅ {∅}}, 3 =
{∅, 1, 2}, ... Notice that n+ 1 = n ∪ {∅} and m < n if and only if

INFINITY: ANCIENT AND NEW 11

5. Axiom of Power Set: For every set A there exists its power set
P(A), which consists of all subsets of A.

6. Axiom of Infinity: An inductive infinite set exists. Its elements
are: ∅, {∅}, {∅,{∅}}, {∅, {∅},{∅,{∅}}}, ...
7. Axiom of Replacement: The image of a set under any definable

function is also a set.
8. Axiom of Regularity or (Axiom of Foundation) Every

nonempty set A contains an element that is disjoint from A.
9. Axiom of Choice: For every set S of nonempty disjoint sets,

there exists a (choice) function f defined on S such that for each set
of S, f(x) ∈ x.

Remark. We have used these axioms, including the axiom of choice,
in our previous examples, like the union of countable many countable
sets is countable.

Let us denote the elements of the sets A0, A1, A2, . . . by

A0 = {a00, a01, . . .}
A1 = {a10, a11, . . .}
A2 = {a20, a21, . . .}
A3 = {a30, a31, . . .}
...

Let us take the union of these sets:

X = A0 ∪ A1 ∪ A2 ∪ A3 . . . = {a00, a01, a10, a20, a11, a02, a03, a12 . . .}
Choose an enumeration of elements of Ai (axiom of choice!)

A0 a00 → a01 a02 → a03 · · ·
↙ ↗ ↙

A1 a10 a11 a12 · · ·
↓ ↗ ↙

A2 a20 a21 · · ·
↙

A3 a30 · · ·
... ↓

Let us illustrate the advantage of the axiomatic set theory on an
Fig 26

example. János Neumann (1903-1957) defined in 1920 the natural
numbers as follows. Let ∅ be the empty set. 1 = {∅}, 2 = {∅ {∅}}, 3 =
{∅, 1, 2}, ... Notice that n+ 1 = n ∪ {∅} and m < n if and only if

INFINITY: ANCIENT AND NEW 11

5. Axiom of Power Set: For every set A there exists its power set
P(A), which consists of all subsets of A.

6. Axiom of Infinity: An inductive infinite set exists. Its elements
are: ∅, {∅}, {∅,{∅}}, {∅, {∅},{∅,{∅}}}, ...
7. Axiom of Replacement: The image of a set under any definable

function is also a set.
8. Axiom of Regularity or (Axiom of Foundation) Every

nonempty set A contains an element that is disjoint from A.
9. Axiom of Choice: For every set S of nonempty disjoint sets,

there exists a (choice) function f defined on S such that for each set
of S, f(x) ∈ x.

Remark. We have used these axioms, including the axiom of choice,
in our previous examples, like the union of countable many countable
sets is countable.

Let us denote the elements of the sets A0, A1, A2, . . . by

A0 = {a00, a01, . . .}
A1 = {a10, a11, . . .}
A2 = {a20, a21, . . .}
A3 = {a30, a31, . . .}
...

Let us take the union of these sets:

X = A0 ∪ A1 ∪ A2 ∪ A3 . . . = {a00, a01, a10, a20, a11, a02, a03, a12 . . .}
Choose an enumeration of elements of Ai (axiom of choice!)

A0 a00 → a01 a02 → a03 · · ·
↙ ↗ ↙

A1 a10 a11 a12 · · ·
↓ ↗ ↙

A2 a20 a21 · · ·
↙

A3 a30 · · ·
... ↓

Let us illustrate the advantage of the axiomatic set theory on an
Fig 26

example. János Neumann (1903-1957) defined in 1920 the natural
numbers as follows. Let ∅ be the empty set. 1 = {∅}, 2 = {∅ {∅}}, 3 =
{∅, 1, 2}, ... Notice that n+ 1 = n ∪ {∅} and m < n if and only if
12 ALICE FIALOWSKI

m is a subset of n. With this method we constructed the function
of “inheritance”, which is an unavoidable tool of many mathematical
proofs, and we also obtained the definition of the relation “less than”,
which means we can start to built the arithmetic. We have the set
{1, 2, 3, 4, . . .} of natural numbers, we can built a set of size 2ℵ0 , and
many other things in today’s mathematics. An important result is the
relation <, with which we can compare elements of natural numbers,
and we can put them in a sequence.

From this comes a question: Which sets have an ordering relation ,
and what conditions such a comparison has to satisfy.

Fig 27

6.2. Order and ordering. The relation < used for natural numbers
have to satisfy the next three conditions: -irreflexive: x < x is not
satisfied for any element x of the set A - transitive: if x, y, z are
elements of A and x < y, y < z then x < z; - trichotom: for x, y from
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exactly the one, all the elements of which satify property P . The prob-
lem arises if we define property P as a set, is it that, when we get
to the problem of a set containing all the sets. Russell gave the next
popular barber example for this paradox: Once the barber of a town
stated that he will cut the hair for every man who does not cut his hair
himself. But if this is true, who will cut the hair of the barber?

To overcome the problem, Russell made the following restriction.
Consider the set of all such sets, which do not contain themselves as
an element. So if we move the barber from the town, we resolve the
paradox. Russel’s reasoning convinced the mathematical society about
the necessity of defining certain basic notions in the entire mathematics.

Fig 23
At the beginning of the 20th century, Ernst Zermelo (1871-1953)

thought that set theory can be well-founded by introducing axioms.
This way he formalized Cantor’s intuition, that every set can be con-
structed with well-defined operations from a set, like from the set of
natural numbers.

Fig 24

6. Axiomatic approach of infinity

6.1. Set theoretical axioms. Most of the axioms used in today’s set
theory originates from Zermelo,

Fig 25

and with an important addition from Abraham Fraenkel (1891-
1965), and we call it Zermelo-Fraenkel system of axioms (1904
and 1922).

1. Axiom of Extensionality: If two sets have the same elements,
the two sets are equal.

2. Axiom of Separation (or Axiom of Subsets): If A is a set
and P is a condition on elements of A then those elements of A which
satisfy condition P form a set.

3. Axiom of Pair (or Axiom of Unordered Pairs): If A and B
are sets, then there exists a set consisting of exactly A and B.
4. Axiom of Union (or Axiom of Sum Set): For any set of sets

F , there is a set A, containing every element that is an element of some
member of F .
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5. Axiom of Power Set: For every set A there exists its power set
P(A), which consists of all subsets of A.

6. Axiom of Infinity: An inductive infinite set exists. Its elements
are: ∅, {∅}, {∅,{∅}}, {∅, {∅},{∅,{∅}}}, ...
7. Axiom of Replacement: The image of a set under any definable

function is also a set.
8. Axiom of Regularity or (Axiom of Foundation) Every

nonempty set A contains an element that is disjoint from A.
9. Axiom of Choice: For every set S of nonempty disjoint sets,

there exists a (choice) function f defined on S such that for each set
of S, f(x) ∈ x.

Remark. We have used these axioms, including the axiom of choice,
in our previous examples, like the union of countable many countable
sets is countable.

Let us denote the elements of the sets A0, A1, A2, . . . by

A0 = {a00, a01, . . .}
A1 = {a10, a11, . . .}
A2 = {a20, a21, . . .}
A3 = {a30, a31, . . .}
...

Let us take the union of these sets:

X = A0 ∪ A1 ∪ A2 ∪ A3 . . . = {a00, a01, a10, a20, a11, a02, a03, a12 . . .}
Choose an enumeration of elements of Ai (axiom of choice!)

A0 a00 → a01 a02 → a03 · · ·
↙ ↗ ↙

A1 a10 a11 a12 · · ·
↓ ↗ ↙

A2 a20 a21 · · ·
↙

A3 a30 · · ·
... ↓

Let us illustrate the advantage of the axiomatic set theory on an
Fig 26

example. János Neumann (1903-1957) defined in 1920 the natural
numbers as follows. Let ∅ be the empty set. 1 = {∅}, 2 = {∅ {∅}}, 3 =
{∅, 1, 2}, ... Notice that n+ 1 = n ∪ {∅} and m < n if and only if
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m is a subset of n. With this method we constructed the function
of “inheritance”, which is an unavoidable tool of many mathematical
proofs, and we also obtained the definition of the relation “less than”,
which means we can start to built the arithmetic. We have the set
{1, 2, 3, 4, . . .} of natural numbers, we can built a set of size 2ℵ0 , and
many other things in today’s mathematics. An important result is the
relation <, with which we can compare elements of natural numbers,
and we can put them in a sequence.

From this comes a question: Which sets have an ordering relation ,
and what conditions such a comparison has to satisfy.

Fig 27

6.2. Order and ordering. The relation < used for natural numbers
have to satisfy the next three conditions: -irreflexive: x < x is not
satisfied for any element x of the set A - transitive: if x, y, z are
elements of A and x < y, y < z then x < z; - trichotom: for x, y from
A, x < y, x = y or y < x.

Assume we have two ordered sets A and B. We call a function
A → B order preserving if for x < y, f(x) < f(y). If such a function
is isomorphic we say that the ordered sets A and B are isomorphic.
The joint property of isomorphic ordered sets we call order type. Let
us check which of those ordered sets have a minimal element. (So far
we only see the finite sets, the set of natural numbers and its subsets).
Call an ordered set A well-ordered, if any subset of A has a least
element.

We call the order type of well-ordered set ordinal number or or-
dinal.

Question: Can we compare two ordinals? Yes, one can define
an ordering between ordinals, so in some sense, ordinals are general-
izations of natural numbers. We call a subset B of an ordered set A
prefix, if for x, y ∈ A such that y < x, y ∈ B.

Example. A prefix of N is {1, 2, 3, ..., 96} and of course also the two
trivial ones: 0 and N.

Let us introduce the prefix defined by an element a. This is
the subset B := x ∈ A : x < a. With this we are able to compare two
ordinals. Let α and β be two ordinals. We say that α < β, if the
ordinal of the well-ordered set A is α, the ordinal of the well-ordered
set B is β, and A is isomorphic to a prefix defined by an element of
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B. It can be shown that this comparison is irreflexive, transitiv and
trichotom.

Now if we have a well-ordered set A and its subset B with the same
well-ordering, then for the ordinal β of B, β < α.

After this, we can continue in the other direction and can enlarge
our given sets, approaching this way infinity. As an example, take a
well-ordered set A with ordinal α, and add to it an element z which is
greater than any element of A. The new set B = A ∪ z is well-ordered
with the ordering in A, as z is greater than any element in A. The
ordinal of B only depends on α. Let the constructed ordinal of B be
α+1. Call ordinals of this type subsequent ordinals. Those nonzero
ordinals which are not of subsequent type, call limit ordinals. This
is equivalent to the following. If we have a well-ordered set A, then we
can talk about subsequent ordinal if A has a largest element. If there
is non, then we talk about limit ordinal.

As for natural numbers, for ordinals we can also define operations.

1. Sum of ordinals

Let A and B disjoint well-ordered sets. Let A and B keep their
original ordering. We require that every element of A is before the
elements of B.

Example: Let A be the set of odd natural numbers, B the set of
even natural numbers. Their union is N , which can be well-ordered.
Consider now the following ordering: say “m is less than n” if m is odd
and n even, or both numbers have the same parity. This way we gave
the following ordering:

1, 3, 5, ... , 2, 4, 6, ...
This construction can be naturally generalized to any, pairwise dis-

joint system of sets. The sum operation is associative, but not neces-
sarily commutative.

2. Ordered product of ordinals

We define the product of the well-ordered sets A and B as adding
to A B times itself. For every b ∈ B, we introduce the set of ordered
pairs (a, b) where a ∈ A. The ordering we define as follows.

If (a, b), (c, d) ∈ A × B and (a, b) < (c, d), then b < d or b = d or
a < c.

Warning: It is important from which side we multiply. If from the
left, like 2ω, we can get a set similar to ω. But if we consider 1ω+1ω,
this will be different from ω.
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3. Power of ordinals

Use the product of ordinals.

α0 := 1

αβ+1 = αβ × α,

where αβ := {supαγ, γ < β}. With these operations let us try to

enlarge ordinals.

ω, ω + 1, ω + 2, ω + 3, ..., ω × 2,

where ω × 2 is the supremum of the previous ones.
Now continue as follows:

ω × 2 + 1, ω × 2 + 2, ω × 2 + 3, ...

The least upper bound of these denote by ω × 3.
This initiates a new sequence of growing ordinals, the least upper

bound of which is ω × 4, etc. Consider now the next sequence of the
so far obtained ordinals:

ω, ω × 2, ω × 3, ...

the supremum of which being ω×ω = ω2. This can be again exceeded:

ω2 + 1, ω2 + 2, ω2 + 3, ..., ω2 + ω,

which again can be enlarged:

ω2 + ω × 2, ω2 + ω × 3, ω2 × 4, ..., ω2 + ω2 = ω2 × 2

This is followed in a natural way by the sequence of bigger ordinals
ω3, ω4, ω5, ... and their supremum ωω.

Let me make this process more spectacular. Let us try to imagine
the ordinals as the set of rational numbers in (0, 1), with the usual
ordering <. Let ω be the ordinal of the set {1/2, 3/4, 7/8, . . . } and let
us represent every element of this set by a vertical line segment, the
length of which approaching 0, as we approach ω.

If we can represent this way the ordinal α, than also α+1. First place
the fractions representing α into (0, 1/2) by dividing every element by
2.

Then add to this system the point 1/2, as the representative of α+1.
If α1 < α2 < α3 < ... is representable, then so is its supremum. For
this place α1 into (0, 1/2), α2 into (1/2, 3/4), α3 into (3/4, 7/8), . . . .
Finally put into its place the supremum of the constructed α1, α2, ...
system, the 1. Thus way we can even represent the ordinal ωω with
the appropriate set of rational numbers:
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Question: Can we compare two ordinals? Yes, one can define
an ordering between ordinals, so in some sense, ordinals are general-
izations of natural numbers. We call a subset B of an ordered set A
prefix, if for x, y ∈ A such that y < x, y ∈ B.

Example. A prefix of N is {1, 2, 3, ..., 96} and of course also the two
trivial ones: 0 and N.

Let us introduce the prefix defined by an element a. This is
the subset B := x ∈ A : x < a. With this we are able to compare two
ordinals. Let α and β be two ordinals. We say that α < β, if the
ordinal of the well-ordered set A is α, the ordinal of the well-ordered
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B. It can be shown that this comparison is irreflexive, transitiv and
trichotom.

Now if we have a well-ordered set A and its subset B with the same
well-ordering, then for the ordinal β of B, β < α.

After this, we can continue in the other direction and can enlarge
our given sets, approaching this way infinity. As an example, take a
well-ordered set A with ordinal α, and add to it an element z which is
greater than any element of A. The new set B = A ∪ z is well-ordered
with the ordering in A, as z is greater than any element in A. The
ordinal of B only depends on α. Let the constructed ordinal of B be
α+1. Call ordinals of this type subsequent ordinals. Those nonzero
ordinals which are not of subsequent type, call limit ordinals. This
is equivalent to the following. If we have a well-ordered set A, then we
can talk about subsequent ordinal if A has a largest element. If there
is non, then we talk about limit ordinal.

As for natural numbers, for ordinals we can also define operations.

1. Sum of ordinals

Let A and B disjoint well-ordered sets. Let A and B keep their
original ordering. We require that every element of A is before the
elements of B.

Example: Let A be the set of odd natural numbers, B the set of
even natural numbers. Their union is N , which can be well-ordered.
Consider now the following ordering: say “m is less than n” if m is odd
and n even, or both numbers have the same parity. This way we gave
the following ordering:

1, 3, 5, ... , 2, 4, 6, ...
This construction can be naturally generalized to any, pairwise dis-

joint system of sets. The sum operation is associative, but not neces-
sarily commutative.

2. Ordered product of ordinals

We define the product of the well-ordered sets A and B as adding
to A B times itself. For every b ∈ B, we introduce the set of ordered
pairs (a, b) where a ∈ A. The ordering we define as follows.

If (a, b), (c, d) ∈ A × B and (a, b) < (c, d), then b < d or b = d or
a < c.

Warning: It is important from which side we multiply. If from the
left, like 2ω, we can get a set similar to ω. But if we consider 1ω+1ω,
this will be different from ω.
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3. Power of ordinals

Use the product of ordinals.

α0 := 1

αβ+1 = αβ × α,

where αβ := {supαγ, γ < β}. With these operations let us try to

enlarge ordinals.

ω, ω + 1, ω + 2, ω + 3, ..., ω × 2,

where ω × 2 is the supremum of the previous ones.
Now continue as follows:

ω × 2 + 1, ω × 2 + 2, ω × 2 + 3, ...

The least upper bound of these denote by ω × 3.
This initiates a new sequence of growing ordinals, the least upper

bound of which is ω × 4, etc. Consider now the next sequence of the
so far obtained ordinals:

ω, ω × 2, ω × 3, ...

the supremum of which being ω×ω = ω2. This can be again exceeded:

ω2 + 1, ω2 + 2, ω2 + 3, ..., ω2 + ω,

which again can be enlarged:

ω2 + ω × 2, ω2 + ω × 3, ω2 × 4, ..., ω2 + ω2 = ω2 × 2

This is followed in a natural way by the sequence of bigger ordinals
ω3, ω4, ω5, ... and their supremum ωω.

Let me make this process more spectacular. Let us try to imagine
the ordinals as the set of rational numbers in (0, 1), with the usual
ordering <. Let ω be the ordinal of the set {1/2, 3/4, 7/8, . . . } and let
us represent every element of this set by a vertical line segment, the
length of which approaching 0, as we approach ω.

If we can represent this way the ordinal α, than also α+1. First place
the fractions representing α into (0, 1/2) by dividing every element by
2.

Then add to this system the point 1/2, as the representative of α+1.
If α1 < α2 < α3 < ... is representable, then so is its supremum. For
this place α1 into (0, 1/2), α2 into (1/2, 3/4), α3 into (3/4, 7/8), . . . .
Finally put into its place the supremum of the constructed α1, α2, ...
system, the 1. Thus way we can even represent the ordinal ωω with
the appropriate set of rational numbers:
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6.3. Continuum hypothesis. Question:Can we get further in the
notion of infinity?

So far we have seen several examples of incomprehensibility of or-
dinals, but it is imprtant to notice that they all were countable or
countably infinite. Can we get further with this procedure?

We can also define the cardinality of ordinals, as there is an order-
preserving bijection between sets of given ordinal.

Theorem. There exists an uncountable ordinal.

With this we can overcome the countable ordinals. Let us take the
smallest among them, and denote it by ω1, its cardinality by ℵ1. This
way we constructed the smallest ordinal which is greater than ℵ0, but
- as we have seen before - , there exists a cardinal which is bigger than
ℵ1. But in this case we can choose among those the smallest one, ω2,
the cardinality of which we call ℵ2. With this method we can get the
recursion of transfinite ordinals.

Question: Where is the continuum cardinality in this list? It would
be good if the uncountable set obtained by the two methods, the 2ℵ0

subsets of N and the newly obtained ℵ1, would represent the same
cardinality:

2ℵ0 = ℵ1.

This problem was already noticed by Cantor in 1883. He called it
“continuum hypothesis”, but the decision of its truth goes beyond the
human power.

In the 20th century there were two important breakthroughs in un-
derstanding what can be proved in a given system and what not. In
1940Fig 30, 31

Kurt G’́odel (1906-1970) was able to prove that the continuum
hypethesis can not be denied on the basis of the given axiom system.
In 1963 Paul Cohen (1934-2007) showed the independence of the
continuum hypothesis. He gave a method which makes it possible to
construct infinitely many models of set theory. Cohen himself thought
there might be many cardinals between countable and continuum, but
so far neither the validity nor the impossibility can be justified.

Question: Does a Universe exist without contradictions ?

INFINITY: ANCIENT AND NEW 15

Fig 28

Fig 29

6.3. Continuum hypothesis. Question:Can we get further in the
notion of infinity?

So far we have seen several examples of incomprehensibility of or-
dinals, but it is imprtant to notice that they all were countable or
countably infinite. Can we get further with this procedure?

We can also define the cardinality of ordinals, as there is an order-
preserving bijection between sets of given ordinal.

Theorem. There exists an uncountable ordinal.

With this we can overcome the countable ordinals. Let us take the
smallest among them, and denote it by ω1, its cardinality by ℵ1. This
way we constructed the smallest ordinal which is greater than ℵ0, but
- as we have seen before - , there exists a cardinal which is bigger than
ℵ1. But in this case we can choose among those the smallest one, ω2,
the cardinality of which we call ℵ2. With this method we can get the
recursion of transfinite ordinals.

Question: Where is the continuum cardinality in this list? It would
be good if the uncountable set obtained by the two methods, the 2ℵ0

subsets of N and the newly obtained ℵ1, would represent the same
cardinality:

2ℵ0 = ℵ1.

This problem was already noticed by Cantor in 1883. He called it
“continuum hypothesis”, but the decision of its truth goes beyond the
human power.
In the 20th century there were two important breakthroughs in un-

derstanding what can be proved in a given system and what not. In
1940Fig 30, 31

Kurt G’́odel (1906-1970) was able to prove that the continuum
hypethesis can not be denied on the basis of the given axiom system.
In 1963 Paul Cohen (1934-2007) showed the independence of the
continuum hypothesis. He gave a method which makes it possible to
construct infinitely many models of set theory. Cohen himself thought
there might be many cardinals between countable and continuum, but
so far neither the validity nor the impossibility can be justified.

Question: Does a Universe exist without contradictions ?

16 ALICE FIALOWSKI
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For interested readers, here are two general references.
1. http://en.wikipedia.org/wiki/Infinity
2. http://en.wikipedia.org/wiki/Godel, Escher, Bach

Alice Fialowski, Professor in Mathematics, University of Pécs and
Eötvös Loránd University, Hungary

E-mail address : fialowsk@ttk.pte.hu, fialowsk@cs.elte.hu
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Gewählte Vorträge des Humboldt-Kollegs
„Neue Grenzen – New Frontiers”

UNERWARTETE ENTDECKUNGEN IN DER PHARMAFORSCHUNG

Den Begriff „Unerwartete Entdeckung” kann man auf Englisch mit serendipity in einem Wort ausdrücken. 
Den ursprünglichen Vortrag im Humboldt-Kolleg Budapest im Jahre 2018 habe ich auf Englisch gehalten 
und dementsprechend habe ich das Wort serendipity benutzt. Der folgende Text ist die deutsche Version 
des Vortrags. Unerwartete Entdeckungen spielen eine große Rolle in der Pharmaforschung. Mit Hilfe von 
drei Beispielen möchte ich ihre Bedeutung beleuchten. Diese Entdeckungen sind das Aspirin, die Benzo-
diazepine und das Valproat.

Aspirin 

Das Aspirin ist ein einfaches Derivat der Salicylsäure, welches eine lange Geschichte hat. Extrakte der 
Weidenrinde hatte man schon im alten Ägypten zur Behandlung von rheumatischen Beschwerden ver-
wendet. Diese Behandlung hatte eine schmerzstillende Wirkung gehabt. Auch Hippokrates hatte die Blätter 
des Weidenbaums um 400 vor Christus therapeutisch empfohlen.  Die erste Veröffentlichung stammt von 
Edward Stone (England) aus dem Jahr 1763 über die Verwendung der gepulverten Weidenrinde.  Der deut-
sche Apotheker Buchner hatte eine Substanz aus dem Weidenbaum im Jahre 1828 isoliert, welche er Salicin 
nannte. Dieser Name stammte vom lateinischen Wort für Weide (Salix). Salicin wurde als Wirkprinzip der 
Weidenrinde betrachtet. Erst später, im Jahre 1833, konnte der deutsche Apotheker Merck in Darmstadt 
das Salicin reinigen und als Heilmittel anbieten. Salicin wurde als fiebersenkendes Mittel angewandt. Der 
bittere Geschmack des Salicins erwies sich aber nachteilig. Die Struktur des Salicins war zu dieser Zeit un-
bekannt und die organische Chemie war auch noch im Anfangszustand. Im Jahre 1839 konnte der italieni-
sche Chemiker Raffaele Piria das Salicin zu Salicylsäure oxydieren und die empirische Formel beschreiben.  
Die Strukturaufklärung und die Synthese wurden vom deutschen Chemiker Hermann Kolbe aus Marburg 
im Jahre 1859 durchgeführt. Dieses Verfahren entwickelte sich zu einer industriellen Synthese, welche Phe-
nol und Kohlendioxid als Ausgangsmaterial verwendet. An dieser Arbeit war auch Kolbes Student Friedrich 
von Heyden beteiligt, der seine Forschung in der Küche seines Hauses in Dresden ausgeübt hat. Das Verfah-
ren wurde zum Patent angemeldet, welches auch heute noch eine industrielle Grundsynthese darstellt. Als 
Folge der erfolgreichen industriellen Herstellung ist der Preis der Salcylsäure stark gefallen und es eröffnete 
sich der Weg zur Untersuchung der therapeutischen Anwendung. Es stellte sich heraus, das die Salicylsäure 
neben der fiebersendenden Wirkung auch antiseptisch wirkt. An der Charité in Berlin hatte Franz Stricker 
im Jahre 1876 die Salicylsäure zur Behandlung des rheumatischen Fiebers eingeführt. Er hatte herausge-
funden, dass Salicylsäure auch als schmerzstillendes oder analgetisches Heilmittel verwendet werden kann.

János FISCHER
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